In today’s fast-evolving data centers, expanding the fiber-optic infrastructure is vital for providing the bandwidth and speed needed to transmit large amounts of data to and from multiple sources. As switches with 40G and 100G ports become commonplace, data center infrastructure becomes more complex — and it is becoming increasingly clear that traditional, manual methods for managing fiber connectivity may not be sufficient.
Demand for fast data transmission and efficient network performance has been fueled by requirements to support virtualization, convergence and cloud computing, as well as high-bandwidth applications like streaming video. But while supporting more bandwidth is important, there are additional trends impacting data center fiber infrastructure management:
Higherportdensity
Increasedcomplexityofcablingtopology
Space is at a premium in the data center, which has led to higher densities of fiber ports on equipment and fiber shelves. With increased density comes the increased risk of making or removing the wrong connection - potentially causing widespread disruption in network services.
In its simplest terms, Automated Infrastructure Management (AIM) is an integrated hardware and software platform that manages the entire physical layer. It fully documents the cabling infrastructure, including connected equipment, to provide a complete view of where devices are located and how they are connected.
By capturing information about every physical connection in the network and relaying it to higher-level network management systems, the AIM system provides an accurate, real-time view of the physical network connectivity and can issue alarms when an unplanned or unauthorized change occurs. AIM streamlines the provisioning and monitoring of data center connectivity; produces up-to-date reports on the status and capacity of the network infrastructure — and ultimately can reduce data center downtime and mean-time-to-repair through real-time, precision notification of connectivity outages.
In early 2017, the ISO/IEC WG3 SC25 group is expected to publish the ISO/IEC 18598 Standard for Automated Infrastructure Management Systems — Requirements, Data Exchange and Application.
To meet the key requirements of ISO/IEC 18598, an AIM solution must:
The emergence of AIM standards is making intelligent connectivity a mission-critical technology for data centers. Since cabling infrastructure migration often requires replacement of fiber-optic modules, now is the time to upgrade to an AIM-driven intelligent connectivity system.
The ever-growing demand for more bandwidth to accommodate a wide array of new applications in the data center is driving higher fiber counts, as more and more data centers are being designed and built to run high-speed applications for LAN/SAN. These high-speed applications are based on fiber-optic transmission, making fiber-optic cabling the predominant transmission media in the data center now and into the future.
With more and more optical connections to contend with, the challenge becomes how to add optical density to the fiber frame while still maintaining proper accessibility, flexibility and manageability at the lowest possible cost. As data center operators add more fiber- optic cabling, they often face an out-of-control situation in terms of fiber count, density and space resulting in potentially reduced availability and higher cost of operation.
The attempt to address these issues by using high-density patch panels can make the problem worse, if not done correctly. Trying to fit high-density cabling into cabinets that are designed to house active equipment can result in a tangled “spaghetti bowl” of cabling — especially in configurations where cable management is essentially non-existent. The solution to the problem has two
Choosingadifferentcablingarchitecture.
1
A centralized cross-connect configuration in the main distribution area (MDA) eliminates patching from the core equipment cabinets. All active core ports from LAN/SAN are mirrored in central cross-connect cabinets, resulting in safer operation and simplified design for future growth.
Havingtherightcross-connectsolution.
2
Equipment cabinets that are designed to accommodate servers may also be equipped with fiber patch panels. However, they often provide limited cable management for the patch cords connecting to the active equipment. This scenario may be adequate for equipment connectivity, but does not provide cable management needed for cross-connects. A best-in-class cross-connect solution consists of frames or cabinets that have been designed around the fiber patch panels along with providing patch cord management to accommodate the quantity and types used today and those that will be used in the future. Only when all of this is considered, can the data center designer design the cabling infrastructure of a data center properly.
ODFs have been available for years, used primarily in telecommunication providers’ central offices where tens of thousands of optical fibers converge at a single location. With similar challenges now facing data center operators, the use of ODFs to manage data center cabling has become an effective option.
Since cross-connect ODFs are optimized for cabling, not for equipment, they are able to solve the two largest data center cable management problems: those caused by application migration towards parallel fiber-optic applications, and those caused by the expected growth of the data center itself.
Both of these trends require deploying much more fiber in the data center, resulting in massive patch cord changes in both number and size. ODFs can easily deal with these challenges because they are optimized for cable management, offering bend radius protection for fiber patch cords and over-length storage for efficient use of the ODF even with thousands of patch cords in it.
Correctly designed, cross-connect ODFs function very effectively as the single point of distribution for all LAN, SAN and telecommunication services in the data center, delivering best-in-class cable management and reduced operations costs, with these advantages:
The data center is at the core of today’s business, and fiber-optic connectivity is the fabric, carrying vital data to drive critical business processes and providing connectivity to link servers, switches and storage systems.
Data center designers have two high-level choices when it comes to fiber types: multimode fiber and singlemode fiber. In this chapter, we’ll discuss the development, deployment and advantages of each fiber type, as well as the connectors that pull it all together.
Multimodefiber-thelow-costplatform
Multimode fiber (MMF) continues to be the predominant fiber type deployed in Enterprise Data Centers today. It was initially deployed in telecom networks in the early 1980s. With a light-carrying core diameter about six times larger than singlemode fiber, MMF offered a practical solution to the alignment challenges of efficiently getting light into and out of the cabling.
coating
cladding
core
Today, MMF is the workhorse media for data centers because it is the lowest-cost way to transport high data rates over the relatively short distances in these environments. MMF has evolved from being optimized for multimegabit-per-second transmission using light-emitting diode (LED) light sources to being optimized to support multigigabit transmission using 850 nm vertical cavity surface emitting laser (VCSEL) sources, which tend to be less expensive than their singlemode counterparts.
This leap in performance is reflected in the classifications given by the standards bodies. OM1 and OM2 represented the earlier MMF types with low modal bandwidth and very limited support for higher speed optics. OM3 and OM4 represent the newer, laser-optimized MMFs that are typically installed in data centers today.
The following table provides examples of some of the current data center applications and the maximum channel lengths over different fiber types.
ViewTable
Introducingwidebandmultimodefiber(WBMMF)
OM3 and OM4 provide very high modal bandwidth at 850 nm, the predominant wavelength that can be efficiently supported by VCSEL transmitters. To support an increase in performance over a single pair of multimode fibers, additional wavelengths need to be transmitted alongside 850nm, achieved via a new technology — shortwave wavelength division multiplexing (SWDM). Because the modal bandwidth of OM3 and OM4 fibers were specified for laser operation at 850 nm only, a new specification for optical fiber was required. Many data center managers are now considering wideband multimode fiber (WBMMF), which optimizes the reach of SWDM transmission that delivers four times more information with the same number of fiber strands over practical distances. Being optimized to support the additional wavelengths required for SWDM operation (in the 850 nm to 950 nm range), WBMMF ensures not only more efficient support for future applications across the data center fabric, but also full compatibility with legacy applications because it remains fully compliant to OM4 specifications.
WaveDivisionMultiplexing
By the middle of 2017, the journey to standardization of WBMMF cabling was complete, having been recognized by ISO/IEC and TIA standard bodies. The OM5 designation was adopted for inclusion of this new cabled optical fiber Category in the 3rd Edition of the ISO/IEC 11801 standard. Once again, CommScope led the market in generation standards development as well as product availability and was one of the first manufacturers to deliver a commercially available OM5 end-to-end solution, with the distinctive lime green color that is also being recognized by standards bodies. Well ahead of standards ratification, CommScope introduced the LazrSPEED OM5 Wideband solution in 2016, knowing that the support of higher data throughput using low cost optics, is exactly what Data Center Managers require to enable next generation networks today and in the future.
And the future of OM5 is very bright indeed. At the end of 2017, the IEEE agreed to initiate a project to define next generation multimode transmission using short wave division multiplexing, the transmission technology that OM5 was designed to support.
Goalsandbenefits
Singlemodefiber:Supportinglongerdistances
Designed with a much narrower core, singlemode fiber (SMF) is the technology of choice for longer reach applications in the data center, such as extended runs in the fabric between leaf and spine switches, spine and routers, and into the transport network to connect data centers in different locations. SMF provides higher bandwidth and does not have the modal dispersion limitations inherent in MMF. For this reason, SMF is used in applications where support for higher and next-generation bandwidths can be absolutely guaranteed to be supported. This makes it a perfect media of choice for hyperscale and service provider data center owners to
Very large data centers as well as hyperscale data centers typically deploy SMF to connect multiple halls and extended equipment zones using a centralized connects architecture at the MDA. They typically use a dedicated optical distribution frame (ODF). Deploying an ODF can help to ensure that cables are kept to an optimum length for transmission, while equipment zones and other data halls can be quickly and efficiently patched to one another with the minimum disruption to service and networking equipment.
Singlemode fiber also enables duplex transmission at higher speeds because it is able to transport multiple wavelengths, thus reducing fiber counts. It is anticipated that one of the 200GE and 400GbE applications will utilize four-pair parallel optics over SMF, taking advantage of the lower overall system cost that parallel optics can offer. The PSM4 multisource agreement (MSA) also defines a four-pair transceiver for 100G
Fiberconnectorspullitalltogether
Fiber connectors have evolved along with fiber-optic cabling, driven by increasing fiber density. The duplex LC connector emerged during the early 2000s as the predominant two-fiber type and remains so today. While the evolution of the duplex connector was underway, array connectors (parallel optics) were also emerging. First deployed in public networks, the multifiber push-on (MPO) connector has become a preferred choice for rapidly deploying cabling into data centers. The compact form of the MPO allows 12 or more fibers to be terminated in a compact plug, occupying the same space as a duplex LC. The MPO’s high density enables installation of preterminated, high-strand-count cables, while eliminating the time-consuming process of field installing connectors on site.